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Among the nontrivial topological structures that grand
unified theories with spontaneous symmetry breaking
predict to have formed in the very early Universe, cosmic
strings are supposed to be the ones with the highest prob-
ability of surviving up to the present cosmological era.!
This conclusion has led to an extensive effort to find
characteristic effects which would provide the basis for
verification of the existence of cosmic strings observa-
tionally.

The first important result in this direction was ob-
tained by Vilenkin.2 On the basis of an approximate
solution of the Einstein field equations, he concluded that
a straight-line cosmic string of vanishing thickness will
give rise to the effect of lensing or multiple image pro-
duction, even though no gravitational field appears in the
string’s vicinity. This is due to the fact that, in the pres-
ence of a cosmic string of the above type, the space-time
manifold remains flat but assumes a conical structure
whereby its angular spread around the string becomes
less than 27 rad.

Subsequent studies® based on exact solutions of the
Einstein equations corresponding to finite cross-section
cylinders as models of open cosmic strings have given
ample support to Vilenkin’s main result. Only the rela-
tion D=8nu between the angular defect D of the space-
time manifold in which a straight-line cosmic string is
embedded and the latter’s linear mass density u has been
questioned so far.* Most of the above studies, however,
have been based on static models of the string’s space-
time background. But this background is subject to the
disturbances produced by gravitational waves emitted by
other objects in the string’s vicinity. On the other hand,
the “false-vacuum” region represented by a cosmic
string must not be expected to be homogeneous from the
very beginning of the string’s formation. Thus, a relaxa-
tion process can be envisaged whereby, as the string
evolves to its “lower-energy configuration” (probably,
represented by one of the static models mentioned
above) gravitational waves are emitted.’ Therefore, the
development of a more realistic picture of the gravita-
tional effects associated with cosmic strings requires the
construction of the appropriate time-dependent models.

In this Letter we present an analytic model of a

Vilenkin-type cosmic string interacting with cylindrical
gravitational waves carrying both of the degrees of free-
dom that are possible for these kinds of waves. More
specifically, the model represents a pulse of gravitational
radiation reflecting off a straight-line cosmic string
which occupies the axis of a cylindrically symmetric
space-time. Its construction is based on a new class of
exact radiative solutions of the Einstein vacuum equa-
tions which depends on three parameters (a, B, and 7,
below), two of which are free. Analytic models of
straight-line cosmic strings interacting with gravitational
waves have also been presented by Xanthopoulos,® Gar-
riga and Verdaguer,” and Economou and Tsoubelis.®
What distinguishes the model presented below from the
ones just mentioned is a set of features of which the fol-
lowing are worth pointing out. As noted above, the grav-
itational waves involved in the present model have both
of the degrees of freedom which cylindrical waves can
carry. These degrees of freedom are referred to as the +
and x polarization modes, respectively, and when both
are present it is not possible to find a coordinate system
in which the space-time metric is globally diagonal. As a
result, the corresponding Einstein equations are so hard
to integrate that no analytic solution of this type was
known as late as in 1985, when Piran, Safier, and Stark®
published a thorough numerical analysis of the behavior
of such solutions. Things are much simpler when only
the + mode is present. In this case the metric can be
rendered diagonal [let X =0 in Eq. (5), below] and the
corresponding solutions are known as Einstein-Rosen'®
waves. It is these kinds of waves that appear in the
Garriga-Verdaguer models mentioned above.

Within the category of the nondiagonal solutions, on
the other hand, the models presented below have the ad-
vantage of being the first ones to have the following,
physically important, characteristics. First, the global
parameter a which measures the strength of the cosmic
string is uncoupled from the parameters expressing the
characteristics of the gravitational wave. Second, the
parameter § which represents the strength of the gravita-
tional wave is freely variable within a range which in-
cludes the value =0 at which the wave is switched off.
One of the consequences of the above characteristics is to
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render the physical interpretation of the present solution unambiguous and, thereby, to answer some questions regarding
the physical meaning of similar solutions obtained by Xanthopoulos® and the present authors® recently in the manner

suggested in Ref. 8.

The new class of solutions described above can be derived most conveniently by the application of a limiting pro-

cedure to the line element

ds?=c2X[—x2+1) "ldx?+ (2 —=1) "ldy N+ X/V) (x2+ 1) (2 —1)de?+ (Y/ X)(dz — 0 d9)?, 1)

where
X=(=-px)2+U—gp)?, Y=p2(x*+1)+q%(p*—1),

o=0Q/p)lp*(y—1)(x*+1) )
+q(+12=Ilg—px)(p2—1)].

The range of the coordinates appearing in Eq. (4) is
given by x ER, y € [1,), ¢ € [0,27), and z € R, while
¢, p, I, and g are real parameters, the last three of which
satisfy the condition

g*—1*—p?=1. 3)

As shown in Ref. 8, the above line element represents
a cylindrically symmetric, Petrov type-D solution of the
Einstein vacuum equations. The cylindrical symmetry of
the metric can be made explicit by the coordinate trans-
formation

t=xy, p=[(x2+1)(p2-1)1"2, 4)

which brings the line element given by Egs. (1) and (2)
into the Jordan-Ehlers-Kompaneets canonical form'!

ds?=f(—dt?+dp?)+e ~*¥p2dy?
+e2¥(dz —ydp)?, (5)
where
f=c2(x2+y) 77X, e=Y/X, x=0, (6)

and x,y are expressed in terms of ¢ and p according to
Eq. (4). When f=1 and ¥ =0 =0, Eq. (5) gives the
line element of Minkowski space-time in cylindrical
coordinates. This makes clear the meaning of the vari-
ous coordinate systems that appear in our analysis.

Now, let (a,B8,7) be the set of parameters defined by
the equation

(c,l,p)=(alvq.Bq,7q) , @)

and consider the limit g— oo of Eqgs. (3) and (6). If Eq.
(2) is taken into account, it is easy to verify that the re-
sulting expressions read

Bi+yi=1, (8)
and
f=(a/7)*(x*+y?)"'4, e?*=B/A4,
X=0Qp/yB)Iy* G — 1D+ -0 - G2—-1D1, 9
A=y2x2+(—p)?, B=y2(x*+1)+(%-1),

respectively. Equations (4), (5), (8), and (9) give the
new three-parameter class of solutions announced above.
The corresponding metric retains the Petrov type-D
character of the one we started with and, provided
| B] =1, it is regular everywhere except on the symmetry
axis where, in general, it is quasiregular.'? In equivalent
terms, the axis region of a typical member of the new
class of space-time models constructed above has a coni-
cal structure which reveals itself in the angular defect to
be calculated shortly. On the basis of the results quoted
in the introduction, we attribute this behavior to the
presence of a straight-line cosmic string occupying the
symmetry axis.

In order to unveil the physical meaning of the new
solution let us first set =0 to obtain

ds?=a?(—dt*+dp?)+p2de>+dz?. (10)
Thus, by choosing =0 and |a| >1 we end up with a

flat space-time characterized by an angular defect D <,
where

D=2z(1—|a|7"). an

Next, let =0 and consider the region near the sym-
metry axis p=0. In this region p< |t |. Thus,

x=t—pi/2(t2+1), y=1+p%/2%+1), 12)
which, together with Eq. (9), implies that

ds?=a’Fl—di*+dp>+ (p/a)’dp* ) +F ~'dz?, (13)
where

F=[(8—1)2+y%2/y (2 +1). (14)

Therefore, for || > 1, i.e., for very early and late times,
the metric in the axis region approaches the one given by
Eq. (10).

Let us, now, turn our attention to the asymptotic re-
gion p>>1,|t|. Here,

x=tlp+t(t?—1)/2p3, y=p+U—13)/2p, (15)
which implies that
dst= (a/y)*[—dt*+dp>+ (y/a)?*p?de?]
+[dz —2(8/y)(B—1)dy]? (16)

Therefore, the angular defect measured at spacelike
infinity is given by

Ds=2z(1—|v/al). an
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This is larger than the angular defect measured near the and
axis by an amount 6D, where
,[8c ac
$D=D>—D<=2z(1—|yD)/|a| >0, (18) | o’ 8o
unless =0, in which case | yl =1 and 6D vanishes. We ﬁz(u —v) 1 -1
will now show that the enhancement of the angular de- T 7 3 (23)
fect expressed by Eq. (18) is due to a pulse of cylindrical Q=pIE-p*(+u)] [1+u® 140

waves which, at ¢t = — oo, approaches the axis along the
null direction ¢ = — p, gets reflected off the axis region at
t=0, and, eventually, recedes to the asymptotic region

Equations (22) and (23) imply that on the symmetry
axis, where u =v, the C energy is constant and equal to

p=c° along the outgoing null direction ¢ =p. C<, where
In order to prove the above claim, let us consider the C<=In|al. 24)
quantity (an de th
Comparing this with Eq. (11) we conclude that a non-
=1 2v
Cltp)=7n(fe™), " (1.9) vanishing angular defect near the axis and, therefore, the
which is referred to as Thorne’s C energy. - For cylin- presence of a cosmic string, is equivalent to the C energy
drically symmetric systems, it provides a well defined in this region being positive definite.
measure of the energy per unit length in the z direction Let it, now, be noted that the C energy is constant and
confined within a regign of coordinate radius p. From equal to C < in the regions I ~, where v<< —1, and 1™,
Eq. (9), it follows that in our case where u>> 1, as well. Similarly the C energy is constant
241 and equal to C >, where
= 2 —n2 20
2C=in(a/y) [1 Gl b 20) Cs=Inla/yl, @5)
Introducing the null coordinates « and v, where in the asymptotic region III, where u < —1, v>1. But
_ _ this ceases to be the case in region II which has the sym-
u=t=p, v=ttp, e2)) metry axis and regions I and III as its boundaries. In
we find that fact, in subregion II = where u <0, i.e., in a world tube
centered on the radial null direction v =0, there is an en-
2 . . . + >
2C=In(a/y)? =B 1+ 1+uv ’ ergy fiux towards the axis, while in II. where v>0
2 E there is an energy flux away from the axis of symmetry.
22) In order to determine the shape of the ingoing pulse,
E=[0+u)U+0)]1V2, | consider a null direction along which v =const and use
Eq. (23) to find that
. aC : aC :
lim |[—|=0, lim |—|= . (26)
u— = | Ju ] u— —w[ v ] 200+ =B U +0?) 2+ p%)
Equation (26) shows clearly that at t = — oo there is indeed a flux of gravitational radiation towards p =0 which is
concentrated around the null direction ¢ = —p. Similarly, along u =const
.| acC — B2 .| 8cC
lim [—|= , lim [—|=0. (0¥))
ww[au] 20+u)Q =N 0 +u?) 2= p2u] ww[au]
Thus, an outgoing pulse appears as t— oo which is iden- I
tical in form with the ingoing one at t = — oo, cord with the intuitively expected result that the angular
The above analysis shows clearly that an angular de- defect produced by a dynamic, cylindrically symmetric
fect appears in the wake of the pulse of gravitational system will increase (decrease) as a result of the system’s
waves incident on the string occupying the axis. As a re- absorption (emission) of gravitational radiation.
sult, after the pulse has crossed the cylindrical surface We are indebted to Professor Basilis C. Xanthopoulos
p=po>1 inwards, the angular defect measured at for a critical reading of the manuscript and suggestions
p > po is found to have increased by 8D. This increase for its improvement.
which, according to Egs. (18), (24), and (25), is given
by
8D =2rlexp(—C <) —exp(—C>)], (28)
lasts for as long as the pulse is confined in the region IT. W. B. Kibble, Phys. Rep. 67, 183 (1980); A. Vilenkin,
p < po, i.e., for 8t = 2py. Obviously this process is in ac- Phys. Rep. 121, 263 (1985).
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